Ferdinand-Braun-Institut liefert optimierte ECDL-Lasermodule
Für tragbaren Quantensensor
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) arbeitet im EU-Verbundprojekt iSense am Prototyp eines tragbaren, integrierten Quantensensors, der auf ultrakalten Atomen basiert. Dieser könnte beispielsweise die Erdbeschleunigung messen – in hoher Genauigkeit und an jedem Ort der Erde.
Eine kleine Wolke Rubidium-Atome treibt durch eine Vakuumkammer, die Temperatur liegt nur wenige millionstel Grad über dem absoluten Nullpunkt. Ein Raster aus Laserlicht hält die Atome in Position, damit sie von einem weiteren Laser mit Lichtpulsen beschossen werden können. Die Rubidium-Teilchen reagieren empfindlich auf die Laser-blitze und teilen sich in verschiedene quantenmechanische Zustände auf. Ein dritter Laser detektiert die Veränderungen in der Atomwolke während eines Beschusses, der nur wenige Millisekunden andauert.
Was sich wie ein Experiment aus einem Science-Fiction-Film anhört, wird in mehreren Forschungseinrichtungen in Deutschland, Italien, Frankreich, Österreich und Groß-britannien Realität. Die Partner im iSense-Verbundprojekt erarbeiten einen Sensor-Proto-typ, der auf dem beschriebenen Aufbau beruht und der sich die quantenmechanischen Eigenschaften von Atomen im eisigen Vakuum zunutze macht. „Die Rubidium-Atome kann man mit einem geeigneten Lichtpuls teilen, nicht im Sinne einer Kernspaltung, sondern im quantenmechanischen Sinne“, erklärt FBH-Mitarbeiter Dr. Andreas Wicht. „Dabei wird die Aufenthaltswahrscheinlichkeit eines Atoms an einem Ort mit einer Welle beschrieben, für ein geteiltes Atom habe ich dann zwei Teilwellen. Es befindet sich also nach den Gesetzen der Wahrscheinlichkeit an zwei Orten zugleich.“ Für einen kurzen Zeitraum sind beide Atomteile also an verschiedenen Stellen im Schwerefeld der Erde lokalisiert. Dadurch weisen sie unterschiedliche Energieniveaus auf, was sich in einer abweichenden Schwingungsfrequenz niederschlägt. Wenn das Atom einem weiteren Lichtimpuls ausgesetzt wird und die Teilwellen wieder zusammenkommen, kann man eine Phasenverschiebung der Schwingungen detektieren. „Wir können dadurch auf die Differenz in der Energie der Atome rückschließen und kennen die Erdbeschleunigung, die auf die Atome an genau diesem Punkt der Erde wirkt“, sagt Wicht. Da das System die Welleneigenschaften der ultrakalten Materie im Hochvakuum nutzt, nennt man es Materiewellen-Interferometer.
„Ein Materiewellen-Interferometer ist äußerst komplex konstruiert, weshalb es bisher sehr viel Platz benötigt und nur in Laboren aufgebaut werden kann“, ergänzt Christian Kürbis, der am FBH als Doktorand im iSense-Projekt arbeitet. Das Ziel der Verbundpartner ist es daher, alle Komponenten zu miniaturisieren und in einem handlichen, tragbaren Prototyp zu integrieren. Das FBH liefert dafür mehrere mikro-integrierte Diodenlaser, die auf die besonderen Anforderungen hin optimiert wurden. „Unsere ECDL-Lasermodule sind extrem stabil, mit achtmal zweieinhalb Zentimetern Grundfläche sehr kompakt und haben eine schmale Linienbreite von wenigen kHz bei einer Wellenlänge von 780,24 Nano-metern“, erklärt Kürbis. Alle Laser, ob zur Anregung der Rubidiumatome oder zur Detektion, müssen haargenau auf diese Wellenlänge abgestimmt werden. Hightech steckt aber nicht nur in den Dioden, sondern beispielsweise auch in den optischen Elementen wie Kollimationslinsen sowie in der Mikrointegration. „Das FBH ist eines der weltweit führenden Institute im Bereich der Entwicklung GaAs-basierter Diodenlaser“, so Wicht.
Ein transportfähiges Materiewellen-Interferometer könnte für die geophysikalische Erkundung Verwendung finden. Dabei sind sehr feine Variationen der Erdbeschleunigung an verschiedenen Orten relevant, etwa um unter der Oberfläche liegende Gesteine zu identifizieren. Wicht hält aber auch andere Anwendungen für denkbar: „Man kann auch Beschleunigungen und Rotationen sehr genau bestimmen. Besonders in Bereichen, in denen klassische Satellitennavigation nicht mehr funktioniert, etwa im Weltraum oder unter Wasser, können Materiewellen-Interferometer diese Aufgaben übernehmen.“
Kontakt:
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. 030.6392-2626
Fax 030.6392-2602
E-Mail petra.immerz(at)fbh-berlin.de
Internet: www.fbh-berlin.de